Matthew de Brecht

 

京都大学大学院 人間・環境学研究科

京都大学 総合人間学部

数理・情報科学講座

准教授

 

Kyoto University

Graduate School of Human and Environmental Studies

Mathematical and Information Sciences

Associate Professor

 

matthew (at) i.h.kyoto-u.ac.jp

 

 

 

Selected Publications:
(additional publications can be found on dblp.)

 

M. de Brecht, T. Kihara and V. Selivanov: Ideal presentations and numberings of some classes of effective quasi-Polish spaces. Computability (pre-press), 2024. (arXiv)

 

M. de Brecht: Some notes on spaces of ideals and computable topology. Proceedings of the 16th conference on Computability in Europe (CiE 2020), LNCS vol. 12098, pp. 26-37, 2020. (arXiv)

 

M. de Brecht, A. Pauly and M. Schröder: Overt choice. Computability, vol. 9, no. 3-4, pp. 169-191, 2020. (arXiv)

 

M. de Brecht and T. Kawai: On the commutativity of the powerspace constructions. Logical Methods in Computer Science 15 (3), 2019. (arXiv)

 

M. de Brecht, J. Goubault-Larrecq, X. Jia and Z. Lyu: Domain-complete and LCS-complete spaces. Electronic Notes in Theoretical Computer Science, vol. 345, pp. 3-35, 2019. (arXiv)

 

M. de Brecht: A generalization of a theorem of Hurewicz for quasi-Polish spaces. Logical Methods in Computer Science, 14 (1), 2018. (arXiv)

 

M. de Brecht and A. Pauly: Noetherian Quasi-Polish spaces. Proceedings of the 26th Annual Conference on Computer Science Logic (CCL 2017), vol. 82, pp. 1-17, 2017. (arXiv)

 

M. de Brecht, M. Schröder and V. Selivanov: Base-complexity classifications of QCB0-spaces. Computability, vol. 5, no. 1, pp. 75-102, 2016. (preprint)

 

A. Pauly and M. de Brecht: Descriptive set theory in the category of represented spaces. Proceedings of the 30th Annual Symposium on Logic in Computer Science (LICS), 438-449, 2015. (link)

 

M. de Brecht: Levels of discontinuity, limit-computability, and jump operators. Logic, Computation, Hierarchies, Ontos Mathematical Logic Volume 4: 79-108, 2014. (arXiv)

 

M. de Brecht: Quasi-Polish Spaces, Annals of Pure and Applied Logic 164 (3): 356-381, 2013. (arXiv)

 

M. de Brecht and N. Yamagishi: Combining sparseness and smoothness improves classification accuracy and interpretability. NeuroImage 60 (2): 1550-1561, 2012. (link)

 

V. Brattka, M. de Brecht, and A. Pauly: Closed Choice and a Uniform Low Basis Theorem. Annals of Pure and Applied Logic 163 (8): 986-1008, 2012. (arXiv)

 

M. de Brecht and A. Yamamoto: Mind change complexity of inferring unbounded unions of pattern languages from positive data. Theoretical Computer Science 411(7-9): 976-985, 2010. (link)

 

M. de Brecht and A. Yamamoto: Topological properties of concept spaces (full version). Information and Computation 208 (4): 327-340, 2010. (link)

 

M. de Brecht and J. Saiki: A neural network implementation of a saliency map model. Neural Networks 19 (10): 1467-1474, 2006. (link)

 

 

Talks, Extended Abstracts, and Other Publications:

 

M. de Brecht: Quasi-Polish空間計算可能位相空間論への応用. RIMS共同研究(公開型)数理論理学の最近の進展 (SAML2024), 2024.

 

M. de Brecht: A note on making analytic sets open. Fifteenth International Conference on Computability and Complexity in Analysis (CCA 2024), 2024.

 

M. de Brecht: A note on the closed prime spectrums of coPolish commutative rings. Nineteenth International Conference on Computability and Complexity in Analysis (CCA 2022), 2022.

 

M. de Brecht: Tutorial on Quasi-Polish Spaces. Dagstuhl Seminar 21461, 2021.

 

M. de Brecht: The category of quasi-Polish spaces as a represented space. 68回トポロジーシンポジウム 日本数学会 トポロジー分科会, 2021.

 

M. de Brecht: Constructing the space of valuations of a quasi-Polish space as a space of ideals. Preprint, 2021.

 

M. de Brecht: Some results on countably based consonant spaces. 一般位相幾何学の発展と諸分野との連携, 数理解析研究所講究録2151, 2020.

 

M. de Brecht: A note on the spatiality of localic products of countably based spaces. Computability, Continuity, Constructivity – from Logic to Algorithms (CCC 2019), 2019.

 

M. de Brecht: A note on the descriptive complexity of the upper and double powerspaces. Fifteenth International Conference on Computability and Complexity in Analysis (CCA 2018), 2018.

 

M. de Brecht: Extending continuous valuations on quasi-Polish spaces to Borel measures. Twelfth International Conference on Computability and Complexity in Analysis (CCA 2015), 2015.

 

M. de Brecht: Topological and algebraic aspects of algorithmic learning theory. Doctoral thesis, Graduate School of Informatics, Kyoto University, 2010.

 

M. de Brecht and A. Yamamoto: Sigma^0_alpha - Admissible Representations (Extended Abstract). Sixth International Conference on Computability and Complexity in Analysis (CCA 2009), 2009.