Matthew
de Brecht
京都大学大学院 人間・環境学研究科
京都大学 総合人間学部
数理・情報科学講座
准教授
Kyoto University
Graduate School of Human and Environmental Studies
Mathematical and Information Sciences
Associate Professor
matthew (at) i.h.kyoto-u.ac.jp
Selected Publications:
(additional publications can be
found on dblp.)
M.
de Brecht, T. Kihara and V. Selivanov:
Ideal presentations and numberings of some classes of effective quasi-Polish spaces.
Computability (pre-press), 2024. (arXiv)
M.
de Brecht: Some notes on spaces of ideals and computable topology. Proceedings
of the 16th conference on Computability in Europe (CiE
2020), LNCS vol. 12098, pp. 26-37, 2020. (arXiv)
M.
de Brecht, A. Pauly and M. Schröder: Overt choice.
Computability, vol. 9, no. 3-4, pp. 169-191, 2020. (arXiv)
M.
de Brecht and T. Kawai: On the commutativity of the powerspace
constructions. Logical Methods in Computer Science 15 (3), 2019. (arXiv)
M.
de Brecht, J. Goubault-Larrecq, X. Jia and Z. Lyu: Domain-complete and LCS-complete spaces. Electronic
Notes in Theoretical Computer Science, vol. 345, pp. 3-35, 2019. (arXiv)
M.
de Brecht: A generalization of a theorem of Hurewicz for
quasi-Polish spaces. Logical Methods in Computer Science, 14 (1), 2018. (arXiv)
M.
de Brecht and A. Pauly: Noetherian Quasi-Polish spaces. Proceedings of the 26th
Annual Conference on Computer Science Logic (CCL 2017), vol. 82, pp. 1-17,
2017. (arXiv)
M.
de Brecht, M. Schröder and V. Selivanov:
Base-complexity classifications of QCB0-spaces. Computability, vol. 5, no. 1,
pp. 75-102, 2016. (preprint)
A.
Pauly and M. de Brecht: Descriptive set theory in the category of represented
spaces. Proceedings of the 30th Annual Symposium on Logic in Computer Science
(LICS), 438-449, 2015. (link)
M.
de Brecht: Levels of discontinuity, limit-computability, and jump operators.
Logic, Computation, Hierarchies, Ontos Mathematical
Logic Volume 4: 79-108, 2014. (arXiv)
M.
de Brecht: Quasi-Polish Spaces, Annals of Pure and Applied Logic 164 (3):
356-381, 2013. (arXiv)
M.
de Brecht and N. Yamagishi: Combining sparseness and smoothness improves
classification accuracy and interpretability. NeuroImage
60 (2): 1550-1561, 2012. (link)
V.
Brattka, M. de Brecht, and A. Pauly: Closed Choice
and a Uniform Low Basis Theorem. Annals of Pure and Applied Logic 163 (8):
986-1008, 2012. (arXiv)
M.
de Brecht and A. Yamamoto: Mind change complexity of inferring unbounded unions
of pattern languages from positive data. Theoretical Computer Science 411(7-9):
976-985, 2010. (link)
M.
de Brecht and A. Yamamoto: Topological properties of concept spaces (full
version). Information and Computation 208 (4): 327-340, 2010. (link)
M.
de Brecht and J. Saiki: A neural network implementation of a saliency map
model. Neural Networks 19 (10): 1467-1474, 2006. (link)
Talks, Extended Abstracts, and
Other Publications:
M. de Brecht:
Quasi-Polish空間の計算可能位相空間論への応用.
RIMS共同研究(公開型)数理論理学の最近の進展 (SAML2024), 2024.
M.
de Brecht: A note on making analytic
sets open. Fifteenth International Conference on Computability and
Complexity in Analysis (CCA 2024), 2024.
M.
de Brecht: A note on the closed prime
spectrums of coPolish commutative rings. Nineteenth International
Conference on Computability and Complexity in Analysis (CCA 2022), 2022.
M.
de Brecht: Tutorial on
Quasi-Polish Spaces. Dagstuhl Seminar 21461,
2021.
M.
de Brecht: The
category of quasi-Polish spaces as a represented space. 第68回トポロジーシンポジウム 日本数学会 トポロジー分科会, 2021.
M.
de Brecht: Constructing the space
of valuations of a quasi-Polish space as a space of ideals. Preprint,
2021.
M.
de Brecht: Some
results on countably based consonant spaces. 一般位相幾何学の発展と諸分野との連携, 数理解析研究所講究録2151, 2020.
M.
de Brecht: A note on the spatiality of
localic products of countably based spaces. Computability, Continuity, Constructivity – from Logic to Algorithms (CCC 2019), 2019.
M.
de Brecht: A note on the descriptive
complexity of the upper and double powerspaces. Fifteenth International
Conference on Computability and Complexity in Analysis (CCA 2018), 2018.
M.
de Brecht: Extending continuous
valuations on quasi-Polish spaces to Borel measures. Twelfth International Conference
on Computability and Complexity in Analysis (CCA 2015), 2015.
M.
de Brecht: Topological and algebraic
aspects of algorithmic learning theory. Doctoral thesis, Graduate School of
Informatics, Kyoto University, 2010.
M.
de Brecht and A. Yamamoto: Sigma^0_alpha - Admissible
Representations (Extended Abstract). Sixth International Conference on
Computability and Complexity in Analysis (CCA 2009), 2009.