Matthew de Brecht, Ph. D.


Kyoto University

Graduate School of Human and Environmental Studies

Mathematical Science – Mathematical Informatics



matthew (at)




Selected Publications:


l  de Brecht, M., Schroeder, M. and Selivanov, V.: Base-complexity classifications of QCB0-spaces. Computability, vol. 5, no. 1, pp. 75-102, 2016.


l  Pauly, A. and de Brecht, M. : Descriptive set theory in the category of represented spaces. Proceedings of the 30th Annual Symposium on Logic in Computer Science (LICS), 438-449, 2015.


l  de Brecht, M. : Levels of discontinuity, limit-computability, and jump operators. Logic, Computation, Hierarchies, Ontos Mathematical Logic Volume 4: 79-108, 2014.


l  de Brecht, M. : Quasi-Polish Spaces, Annals of Pure and Applied Logic 164 (3): 356-381, 2013.


l  de Brecht, M. and Yamagishi, N. : Combining sparseness and smoothness improves classification accuracy and interpretability. NeuroImage 60 (2): 1550-1561, 2012.


l  Brattka V., de Brecht M., Pauly A. : Closed Choice and a Uniform Low Basis Theorem. Annals of Pure and Applied Logic 163 (8): 986-1008, 2012.


l  de Brecht, M. and Yamamoto, A. : Mind change complexity of inferring unbounded unions of pattern languages from positive data. Theoretical Computer Science 411(7-9): 976-985, 2010.


l  de Brecht, M. and Yamamoto, A. : Topological properties of concept spaces (full version). Information and Computation 208 (4): 327-340, 2010.


l  de Brecht, M. and Saiki, J. : A neural network implementation of a saliency map model. Neural Networks 19 (10): 1467-1474, 2006.



Some other publications can be found on dblp.